
Zephyr RTOS - embedded software leaving the
stone age

Roland Lezuo
<roland.lezuo@embedded-solutions.at>

SILA embedded solutions GmbH

2025



Introduction

your are an embedded software
engineer when your patches start
to look like this

▶ implemented Java VM JITs
(assembler codegeneration)

▶ thesis about compiler
verification (lots of logic)

▶ R&D at a small company,
freelancer, employees

▶ merged with SILA St.Pölten,
approx. 20 employees

▶ we design, implement and
manufacture electronics
solutions for industrial
applications



Some pictures says more than a thousand words ...



It’s true

Commercial embedded software development moves slowly
▶ IAR (a major compiler vendor) announced C99 support in 2011

(12 years delay)1

▶ Arm Keil compiler still only supports C90 and we just started a
project using it2

▶ STM323 and TI4 picked up eclipse and finally support Linux
work-flows

Expect limitations or additional pain on Linux hosts though ...
STM32’s support is very good though

1https://www.iar.com/dev-dynamic-custom-objects/iar-systems-provides-
c99-compliance-to-8051-software-tools-ce3b6a15

2https://developer.arm.com/documentation/ka004425/latest
3https://www.st.com/en/development-tools/stm32cubeide.html
4https://www.ti.com/tool/CCSTUDIO



But at least commercial tool are well maintained...

If you accept the following behavior:
▶ auto code-generation simply overwrites source files in your tree
▶ but you are expected to modify those files
▶ user code regions for the win



But at least commercial tool are well maintained cont’d...

Or don’t have an issue with things like
▶ auto update of IDE and frameworks on startup, preventing

your project from compilation, with customer in line crying for
a hot-fix

▶ saving last-opened-timestamps in your project setting, making
your git history more lively

▶ using pre-build hook: every build is dirty unless you manually
git-reset those changes in parallel



But at least commercial tool are well maintained cont’d
(2)...

Lets do some CI or at least have some build-machines
▶ you can generate a make based build-system for you project

running on some build-slave, or can’t you?

▶ and btw, post- and pre-build event are not mapped to
Makefile, mapping too hard I guess ...

▶ additional fun fact, path-separator is "\" even on Linux hosts



Leading to only one conclusion ...

[plain]



Getting some things straight...
▶ sometimes you just need assembly language
▶ C is the correct abstraction for many embedded projects
▶ you need a linker language (looking at you mold5)
▶ you often want to use an RTOS as well but they are either

▶ good quality, but proprietary (QNX, vxworks)
▶ open source and extremely ugly (freeRTOS)
▶ proprietary and extremely ugly (embOS)

(n.b. they all do their job, somehow)

5https://github.com/rui314/mold



Introducing Zephyr RTOS

▶ 2001 as RTOS for DSPs
▶ 2015 open-sourced by Wind

River Systems (VxWorks)
▶ 2016 renamed Zepyhr under

Linux Foundation’s roof
▶ 2025 most contributed to

open-source RTOS
▶ support for >8 architectures,

dozens of µC vendors, 750+
boards

Why? Because of its overall
excellence



west for repositories and build-chrome

▶ software dependencies described by manifest file
▶ manifest part of your application
▶ given a SDK and installed host dependencies build as easy as
▶ $ west update && west build
▶ reproducible builds, build-slaves here we come!



CMake and Ninja

application and zephyr module (think libraries + meta-information)
use CMake
▶ fast
▶ parallel
▶ extensible
▶ well-known
▶ portable
▶ re-usable software modules

=> same fun debugging build-systems as real developers



A real hardware-abstraction-layer
▶ based on Linux kernel’s well-known device-tree (dts), but with

deviations
▶ dts resolved and consumed in build-phase (no dtb file!)
▶ defines µC platform and fully specifies peripherals
▶ hooks into zephyr’s driver model
▶ results in real portable (across µC vendors!) embedded

applications
▶ no more vendor-specific kindergarden-level code-generation



A real configuration system

▶ based on Linux kernel’s well-known Kconfig
▶ almost everything needs to be enabled (saving precious flash)
▶ tons of options configurable
▶ no more vendor specific config tool running on windows95 only

need to implement a USB device supporting HID class drivers?



unified device-handling

▶ based on openOCD
▶ part of zephyr-sdk
▶ unified interface to program a device ($ west flash)
▶ unified debugger interface ($ west debug) using gdb

as of today: µC family specific usage experience



its enterprisy too

▶ mostly Apache 2.0 licensed
▶ worry not, we contribute
▶ pulls in vendor HAL libraries and framework (no need to

re-invent wheels)
▶ generates SBOM ($ west spdx)



I can haz cake and eat it too?

▶ host setup much more complex than
clicking setup.exe

▶ lot of complex technologies included
▶ steep learning curves ahead on multiple

occasions
▶ embedded software can not (fully)

abstract away from µC
▶ developer very much needs to understand

Zephyr’s concepts



Conclusion

▶ it’s our default RTOS for all embedded projects, there must be
reasons against Zephyr RTOS

▶ experience in 15+ projects, some quite large, proven stability
▶ definitely worth your time, needs some upfront investment

though
Questions?

:wq



kernel features

▶ threads: cooperative, priority-based, non-preemptive,
preemptive

▶ IRQ services
▶ various memory allocation schemes
▶ synchronization: semaphores, mutex, queues, signals
▶ power-management: different operating modes, needs driver

support
▶ multiple scheduling algorithms
▶ memory-protection, application crash-reports
▶ USB, BLE, Ethernet, IP, TCP, UDP, ...
▶ very good logging framework
▶ unit-tests (can be executed on host zephyr environment)
▶ interactive shell (!)
▶ POSIX APIs


