Zephyr RTOS - embedded software leaving the
stone age

Roland Lezuo
<roland.lezuo@embedded-solutions.at>

SILA embedded solutions GmbH

2025




Introduction

» implemented Java VM JITs
(assembler codegeneration)

» thesis about compiler
verification (lots of logic)

» R&D at a small company,
freelancer, employees

» merged with SILA St.Pdlten,
approx. 20 employees

» we design, implement and

your are an embedded software _
manufacture electronics

engineer when your patches start : _ _
to look like this solutions for industrial

applications




Some pictures says more than a thousand words ...

TN
il evelopment




It's true

Commercial embedded software development moves slowly
» |AR (a major compiler vendor) announced C99 support in 2011
(12 years delay)?
> Arm Keil compiler still only supports C90 and we just started a
project using it?
» STM323 and TI* picked up eclipse and finally support Linux
work-flows
Expect limitations or additional pain on Linux hosts though ...
STM32's support is very good though

https:/ /www.iar.com /dev-dynamic-custom-objects/iar-systems-provides-

c99-compliance-to-8051-software-tools-ce3b6al5
2https://developer.arm.com/documentation /ka004425/latest g
3https://www.st.com/en/development-tools/stm32cubeide.htm
“*https://www.ti.com /tool/CCSTUDIO

MBEDDED SOLUTIONS



But at least commercial tool are well maintained...

If you accept the following behavior:

> auto code-generation simply overwrites source files in your tree

» but you are expected to modify those files

» user code regions for the win

/* USER CODE END SysInit */

/* Initialize all configured peripherals */
MX_GPIO_Init();

/* USER CODE BEGIN 2 */

/* USER CODE END 2

/* Infinite loop */

/% USER CODE BEGIN WHILE */
while (1)

{

HAL_GPIO_TogglePin(LED_GPIO_Port, LED_Pin);
HAL_Delay(1660);
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 g/

¥ <\
/* USER CODE END 3 */




But at least commercial tool are well maintained cont'd...

Or don't have an issue with things like

» auto update of IDE and frameworks on startup, preventing
your project from compilation, with customer in line crying for
a hot-fix

> saving last-opened-timestamps in your project setting, making
your git history more lively

» using pre-build hook: every build is dirty unless you manually
git-reset those changes in parallel




But at least commercial tool are well maintained cont'd

2)...

Lets do some Cl or at least have some build-machines

> you can generate a make based build-system for you project
running on some build-slave, or can't you?

GUIApp.elf: $(0BIS) SPUSER_OBISH

arm-non-eabi-gcc -mcpu=cortex-m4 -mthumb -mfloat-abi=hard -mfpu=fpvd-sp-dié
-02 -fmessage-length=0 -fsigned-char -ffunction-sections -fdata-sections -Wunused -W
uninitialized -Wall -Wextra -Wmissing-declarations -Wconversion -Wpointer-arith -Wsh
adow -Wlogical-op -Waggregate-return -Wfloat-equal -g3 -T ”C:\\Users\\User\\e2_studi
NI S TSR AT R T AR EY (PR - X1inker --gc-sections -L MC:\\Users\\User\\e
2_studio\\workspace\\GUIApp\\synergy\\ssp\\src\\bsp\\cmsis\\DSP_Lib\\cm4_gcc" -L "C:
\\Users\\User\\e2_studio\\workspace\\GUIApp\\synergy\\ssp\\src\\framework\\el\\gx\\c
md_gec" -L "C:\\Users\\User\\e2_studio)\\workspace\\GUIApp\\synergy\\ssp\\src\\framew
prk\\el\\tx\\emd4 gec" -Wl,-Map, "GUIApp.map" --specs=nano.specs --specs=rdimon.specs
-0 "GUIApp.elf" -Wl,--start-group $(0BJS) S(USER_0BJIS) S(LIBS) -W1,--end-group

I

JUCLAt e

» and btw, post- and pre-build event are not mapped to
Makefile, mapping too hard | guess ...

» additional fun fact, path-separator is "\" even on Li

EMBEDDED SOLUTIONS



Leading to only one conclusion ...

IT'S AN UGLY PLANET, A BUG
PLANEL s




Getting some things straight...

> sometimes you just need assembly language

» C is the correct abstraction for many embedded projects

» you need a linker language (looking at you mold®)

» you often want to use an RTOS as well but they are either
> good quality, but proprietary (QNX, vxworks)

> open source and extremely ugly (freeRTOS)
» proprietary and extremely ugly (embOS)

(n.b. they all do their job, somehow)

®https://github.com/rui314/mold




Introducing Zephyr RTOS

» 2001 as RTOS for DSPs

» 2015 open-sourced by Wind
River Systems (VxWorks)

> 2016 renamed Zepyhr under
Linux Foundation's roof

» 2025 most contributed to
open-source RTOS

» support for >8 architectures,
dozens of pC vendors, 750+
boards

Why? Because of its overall
excellence




west for repositories and build-chrome

software dependencies described by manifest file
manifest part of your application
given a SDK and installed host dependencies build as easy as

>
>
>
> $ west update && west build

» reproducible builds, build-slaves here we come!

Mjnil‘est:
remotes:
- name: pemess
url-base: git@bitbucket.org:s

projects:
- name: zephyr
remote:
revis =R 540afcees7ccofodf5cdasfoT2
import:
- path-blocklist:
- bootloader/*
- modules/hal/*
- path-allowlist:
- modules/hal/stm32
- modules/hal/cmsis

- name: wxlua
path: tools/wxlua
remo -
revision: & - . _+9acda22ec3dc2d2bd454a6fb




CMake and Ninja

application and zephyr module (think libraries + meta-information)
use CMake

> fast
parallel
extensible
well-known

portable

vVvYyyvyy

re-usable software modules

yZ

=> same fun debugging build-systems as real developers ﬁ

EMBEDDED SOLUTIONS



A real hardware-abstraction-layer

| 2

VVYVYYV

Bi2cl

based on Linux kernel's well-known device-tree (dts), but with
deviations

dts resolved and consumed in build-phase (no dtb file!)
defines pC platform and fully specifies peripherals

hooks into zephyr's driver model

results in real portable (across pC vendors!) embedded
applications

no more vendor-specific kindergarden-level code-generation

{
pinctrl-0 = <&i2c1_scl_pb8 &i2cl1_sda_pb9=;
pinctrl-names = "default";

pexp: pcaledle@zo {
compatible = "nxp,pcalédlea”;
reg = <0x20>; // 8-bit format
ngplos = <16>;

gplo-controller;
#gpio-cells = <2=;

int-gpios = <&gpioa 12 GPIO_ACTIVE_LOW=;
reset-gplos = <&gpice O GPIO_ACTIVE_LOW=;

status = "okay";

};




A real configuration system

» based on Linux kernel's well-known Kconfig

» almost everything needs to be enabled (saving precious flash)
> tons of options configurable

» no more vendor specific config tool running on windows95 only

need to implement a USB device supporting HID class drivers?

aush {
pinctrl-0 = <gUSH dm_pall &QsB dp_pal2>;
pinctrl-names = "default";
status = "okay";

1

../boards/arm/es

CONFIG_USB_DEVICE_STACK=y
CONFIG_USB_DEVICE_HID=y

CONFIG_HID_INTERRUPT_EP_MPS=64
CONFIG_USB_HID_BOOT_PROTOCOL=n
CONFIG_USB_DEVICE_MANUFACTURER="SILA Embedded Solutions GmbH"
CONFIG_USB_DEVICE_PRODUCT="" o Demonstator
CONFIG_USB_DEVICE_VID=0x"

CONFIG_USB_DEVICE_PID=0x




unified device-handling

» based on openOCD

» part of zephyr-sdk

» unified interface to program a device ($ west flash)
» unified debugger interface ($ west debug) using gdb

as of today: pC family specific usage experience




Its enterprisy too

v

L€
mostly Apache 2.0 licensed -
worry not, we contribute

pulls in vendor HAL libraries and framework (no need to
re-invent wheels)

generates SBOM ($ west spdx)




| can haz cake and eat it too?

» host setup much more complex than
clicking setup.exe

> lot of complex technologies included

> steep learning curves ahead on multiple
occasions

» embedded software can not (fully)
abstract away from pC

» developer very much needs to understand
Zephyr's concepts




Conclusion

> it's our default RTOS for all embedded projects, there must be
reasons against Zephyr RTOS

> experience in 15+ projects, some quite large, proven stability

» definitely worth your time, needs some upfront investment
though

Questions?
w(q




kernel features

>

vvvyyy

vVvVvvyVvYvyyvyy

threads: cooperative, priority-based, non-preemptive,
preemptive

IRQ services
various memory allocation schemes
synchronization: semaphores, mutex, queues, signals

power-management: different operating modes, needs driver
support

multiple scheduling algorithms
memory-protection, application crash-reports
USB, BLE, Ethernet, IP, TCP, UDP, ...

very good logging framework

unit-tests (can be executed on host zephyr environment)
interactive shell (1)
POSIX APls




