
Hacking Android Disk Encryption
for Fun and Profit

David Gstir

david@sigma-star.at

Hi!

● All things security @ sigma star gmbh

● Security audits of basically everything

that runs code

● Engineering and consulting around

Linux, embedded systems and security

● Trainings

2

Smartphone Storage Security

● Smartphones are used for security critical things:
○ Banking (remember when TANs had to be separated from banking device?)

○ Electronic signatures: eIDAS, ID Austria etc.

○ ...

● We take our smartphones to far more places than a regular

Notebook - and we lose it more easily

● Needs strict security controls (disk encryption is just one of

many)

● Similar threat model as embedded systems

● At least since EU CRA secure storage is a hard requirement!

3

What About Android?

● Android (AOSP - Android Open Source Project) does a lot
of this out of the box

● Uses hardware support when possible (e.g. ARM TrustZone)
● Vendors can modify that as they see fit
● But how exactly? And how secure is it?

I recently had the chance to look at this in more detail.

The story goes something like this…

4

Act 1: A Quest!

5

A Curious Request

X: Can you help me recover data from my Android phone?

me: Do you have a backup?

X: Well yes, but it is not a regular backup.

 It's a low-level disk dump of the encrypted disk.

me: 🤨🤔
6

The Goal

After meeting in person the situation became clear:

● Samsung Galaxy S21 Ultra

● Was running Android 11

● Got stuck in boot loop

● Owner created low-level dump of internal encrypted

storage

● Owner flashed stock Android 12

7

What I Knew About Android Disk Encryption

● Android uses fscrypt to encrypt filesystem contents at file level

● This is the same as in Linux as Google contributed their Android

Kernel changes to mainline Linux

● I worked plenty on that in the past (UBIFS fscrypt integration)

● All fscrypt needs is an encryption key which some program hands to

the kernel (through a ioctl(3) call)

● Assumptions:
○ Key is stored as encrypted “blob” on unencrypted partition

○ ARM TrustZone has to play some part in this

○ User lock code or biometrics have to be involved

○ Should be doable, but surely not as easy as it sounds 😉

8

Act 2: Hunt for the Key

9

First Attempt

● First idea: restore backup and try to boot
● Fail: attempting to downgrade to stock Android 11 did not

work
● Samsung prevents downgrade once Android 12 was installed
● Only done in case of major security vulns!
● Reason: Vuln. in their TrustZone key blob mechanism1)

● This would have made my task that much easier!
● However: Open sourced tooling (keybuster) which is

helpful for us

1) Paper Trust Dies in Darkness: Shedding Light on Samsung’s TrustZone Keymaster Design by Shakevsky et al 10

Interlude: Mapping the Dungeon

11

Inner Workings of Android FBE

Since Android 9 there are multiple layers of encryption:

1. Metadata encryption: dm-crypt-like block encryption

(below filesystem) plus fscrypt on top for some folders

2. Device encrypted (DE) storage: fscrypt on some folders

3. Credential encrypted (CE) storage: again fscrypt, but

requires user lock code

12

High-Level Mount Logic

Relevant parts of mount flow during boot (mainly vold service):

1. Mount /metadata (not encrypted)

2. Unwrap metadata key

3. Attach DM (Device Mapper) volume “userdata” using dm-crypt equivalent

4. Mount as /data (f2fs)

5. Unwrap metadata fscrypt key and add to Kernel

6. Unwrap and load DE key

7. On device unlock: Unwrap and load CE key

All key unwrapping is done through TrustZone call

13

Master of Keys: Android Keystore

14

Master of Keys: Android Keystore

The Android Keystore API manages all keys:

● Keymaster TA (Trusted App.) in TEE (Trusted Exec. Env. aka
TrustZone) is doing unwrap

● Called via a Kernel interface by keystore daemon
● keystore (and the associated Keymaster HAL library) contain a lot

of checks we have to pass for a call to succeed
● Samsung extra: libkeymaster_helper.so conctains logic to call Kernel

Keymaster TA interface
● Trick from keybuster: bypass keystore by simply calling directly

into libkeymaster_helper.so from our process

15

Act 2.1: Hunt for the Key_s_!

16

Key Blob Storage Files

For metadata encryption AOSP source reveals key blob in

/metadata/vold/metadata_encryption/key/.

Contains multiple files:

● secdiscardable: used the generate “AppID”

● stretching: contains nopassword so we can ignore it

● encrypted_key: the key blob we want to decrypt

● keymaster_key_blob: the key used by Keymaster TA to decrypt

encrypted_key - is encrypted with Keymaster TA internal key

17

Unwrap, Please!

Revere engineering some functions from

libkeymaster_helper.so gives us:

● nwd_begin(...): starts unwrap with key

encryption key. Args: AppID, key blob, etc.

● nwd_update(...): performs unwrap with key

blob yielding plaintext key

● nwd_finish(...): does cleanup

18

Pseudocode of unwrap logic using libkeymaster_helper.so:

unwrap_vold_key() {

secdiscard = read_file("./secdiscardable");

app_id = generate_appid(secdiscard); // essentially SHA512 with some constants added

keyblob = read_file("./encrypted_key");

kek = read_file("./keymaster_key_blob");

in_params = generate_in_params(keyblob[:12] /* nonce */);

dummy = {0};

nwd_begin(KM_PURPOSE_DECRYPT, kek, in_params, NULL, &dummy, &handle);

nwd_update(handle, NULL, keyblob[12:], NULL, NULL, &dummy_cnt, &dummy, &plain_key);

nwd_finish(handle, NULL, NULL, NULL, NULL, NULL, &dummy, NULL);

}

Full Unwrap Code

19

Key Blob Parameters

in_params for Keymaster TA:

● 256-bit AES key
● 128-bit GCM MAC (no padding, 128-bit min MAC length)
● Nonce from key blob
● Tag AppID: needs the AppID generated from secdiscardable file

(SHA512 with some constants added)
● Tag TAG_NO_AUTH_REQUIRED: no user credentials needed
● Tag TAG_ROLLBACK_RESISTANCE (if possible, re-tries without

afterwards)

20

Delving Deeper

Now we can mount userdata partition (/data) which holds the key

blobs for fscrypt:

● /data/misc/vold/user_keys/de/0/: user DE (device encrypted)

● /data/misc/vold/user_keys/ce/0: user CE (credential encrypted)

● /data/unencrypted/key: needed to access above folders

● Unwrapping keys in /data/unencrypted/key and

/data/misc/vold/user_keys/de/0/ only required minimal changes

to our existing unwrap logic

21

Interlude: Demo || GTFO

22

23

https://docs.google.com/file/d/1y5wWu4xTZT-JZo4al13W0REfn4jl9k-s/preview

Act 3: Attack of the Hidden Chip

24

● Flashing Android 12 did not invalidate key blobs from

backup

● No lock code or biometrics needed yet

● TrustZone (Keymaster TA) does not care who calls it and

what state the Android OS is in (rooted or not)!

What Happened So Far...

25

Introducing: The Weaver Security Chip

● Newer phones have what AOSP calls a “Weaver” security

chip - similar to a Key-Value store

● The Samsung Galaxy S21 Ultra is the first Samsung

flagship phone having this chip

● During initial setup, Android enrolls a random secret key

there (i.e. the value of the Key-Value store)

● This secret key is combined with the lock code and used

as input to Keymaster TA unwrap call

26

Map to the Key

source: blog.quarkslab.com annotations: /me

Happens in Keymaster TA
(TrustZone)

User’s lock code

27

Weaver Security Chip Interaction

source: blog.quarkslab.com
28

Unrecoverable Key

● It looks like the Weaver chip is reset when a new Android

OS first set up

● Cannot derive all the inputs for Keymaster TA to decrypt

the CE key blob

● Brute force is also not possible: search space too large

(32-byte value)

● Only chance: Samsung changed AOSP code and messed up or I

missed something (totally possible 😉)

29

Act 4: Fun and ProfitInsight
s

30

Insights: Android Storage Security

● Android has good multi-layered approach for disk encryption
● More fine-grained control over who can access what parts of

disk
● Still no per-App encryption though - once CE key is known,

user’s App data is decryptable
● Disk encryption is only useful in combination with other

mechanisms: verified boot, strict SELinux policy, etc.
● TrustZone OS does not care about state of Android OS at all
● Privileged exploit can still talk to TrustZone as we did and

unwrap key blobs (not only for disk encryption)

31

● The encrypted Disk Backup could not be recovered
● Without the device this would be impossible to do
● Backup your smartphone!
● Encrypting the backup is good, but be sure to backup the

encryption key too
● Other devices (embedded and regular) should adopt some of the

concepts from Android

Chances for a sequel to this quest: minimal - though I did just
discover one more thing to test today 😅

Insights: Encrypted Backup Recovery

32

Credits

● Huge thanks to the owner of the Android phone! 😁
● Keybuster tooling and writeup on Samsung TrustZone hacking:

https://github.com/shakevsky/keybuster

● Quarkslab Blog post on Android FBE:

https://blog.quarkslab.com/android-data-encryption-in-depth.ht

ml

● Frida for dynamic analysis on device: https://frida.re

● Ghidra for reversing: https://ghidra-sre.org

● Android AOSP and Android Code Search: https://cs.android.com

33

https://github.com/shakevsky/keybuster
https://blog.quarkslab.com/android-data-encryption-in-depth.html
https://blog.quarkslab.com/android-data-encryption-in-depth.html
https://frida.re
https://ghidra-sre.org
https://cs.android.com

The End.
Questions?

David Gstir

david@sigma-star.at

34

Bonus: Post-Credits Scene

35

Are Evil Maid Attacks Possible?

Not out of the box, but:

● Bypass of verified boot will enable it

● Unlocked bootloader is a problem

● Downgrade attacks are a problem (usually possible to do)
○ Samsung did properly prevent downgrade in case of major vuln. in our

case

36

Metadata Encryption

● Lowest encryption layer and first to unlock during boot

● Called dm-default-key - pretty much the same as dm-crypt

in Linux

● Encrypts storage blocks and sits beneath filesystem

● Key is added to Kernel via device mapper ioctls:

DM_DEV_CREATE, DM_TABLE_LOAD, DM_DEV_SUSPEND

● Similar to fscrypt all we need is the encryption key and

hand it to the Kernel

37

Device Encrypted Storage

● Second layer of encryption

● Encrypts part of storage that need to be accessible right

after boot (before lock code is provided)

● Uses fscrypt

● Encrypts based on per-directory policy (only parts of

filesystem is encrypted)

● Key is added to Kernel ioctl(3): FS_IOC_ADD_ENCRYPTION_KEY

38

Credential Encrypted Storage

● Last encryption layer protecting user data (profile)

● Also uses fscrypt, so similar to DE storage

● Requires biometrics or passcode to unlock

● Will be hardest part as requires (more) interaction with

TrustZone

39

