Hacking Android Disk Encryption
for Fun and Profit

David Gstir

david@sigma-star.at

= ..
=3 sigma star
=) gmbh

e All things security @ sigma star gmbh

e Security audits of basically everything
that runs code

e Engineering and consulting around
Linux, embedded systems and security

e Trainings

= _.
=5 sigma star
=) gmbh

Smartphone Storage Security

e Smartphones are used for security critical things:

o Banking (remember when TANs had to be separated from banking device?)
o Electronic signatures: eIDAS, ID Austria etc.

(@]

e We take our smartphones to far more places than a regular
Notebook - and we lose it more easily

e Needs strict security controls (disk encryption is just one of
many)

e Similar threat model as embedded systems

e At least since EU CRA secure storage is a hard requirement!

== .
=5 sigma star
=) gmbh

What About Android?

e Android (AOSP - Android Open Source Project) does a lot
of this out of the box

e Uses hardware support when possible (e.g. ARM TrustZone)
e Vendors can modify that as they see fit
e But how exactly? And how secure is it?

I recently had the chance to look at this in more detail.

The story goes something like this..

= _.
=5 sigma star
=) gmbh

Act 1: A Quest!

= ..
=3 sigma star
=) gmbh

A Curious Request

X: Can you help me recover data from my Android phone?

me: Do you have a backup?

X: Well yes, but it is not a regular backup.
It's a low-level disk dump of the encrypted disk.

]

®)
®)
®)

me: &2

== .
=5 sigma star
=) gmbh

The Goal

After meeting in person the situation became clear:

e Samsung Galaxy S21 Ultra

e Was running Android 11

e Got stuck in boot loop

e Owner created low-level dump of internal encrypted
storage

e Owner flashed stock Android 12

= _.
=5 sigma star
=) gmbh

What I Knew About Android Disk Encryption

e Android uses fscrypt to encrypt filesystem contents at file level

e This is the same as in Linux as Google contributed their Android
Kernel changes to mainline Linux

e I worked plenty on that in the past (UBIFS fscrypt integration)

e All fscrypt needs is an encryption key which some program hands to
the kernel (through a ioctl(3) call)

e Assumptions:

o Key is stored as encrypted “blob” on unencrypted partition
o ARM TrustZone has to play some part in this

o User lock code or biometrics have to be involved

o Should be doable, but surely not as easy as it sounds &

= _.
=5 sigma star
=) gmbh

Act 2: Hunt for the Key

= ..
=3 sigma star
=) gmbh

=
=

First Attempt

sigma star

gmbh

First idea: restore backup and try to boot

Fail: attempting to downgrade to stock Android 11 did not
work

Samsung prevents downgrade once Android 12 was installed
Only done in case of major security vulns!

Reason: Vuln. in their TrustZone key blob mechanism
This would have made my task that much easier!

However: Open sourced tooling (keybuster) which is
helpful for us

1) Paper Trust Dies in Darkness: Shedding Light on Samsung’s TrustZone Keymaster Design by Shakevsky et al

10

Interlude: Mapping the Dungeon

== .
=3 sigma star
=) gmbh

Inner Workings of Android FBE

Since Android 9 there are multiple layers of encryption:

1. Metadata encryption: dm-crypt-1like block encryption
(below filesystem) plus fscrypt on top for some folders

2. Device encrypted (DE) storage: fscrypt on some folders

3. Credential encrypted (CE) storage: again fscrypt, but

requires user lock code

= _.
=5 sigma star
=) gmbh

12

=
=

High-Level Mount Logic

Relevant parts of mount flow during boot (mainly vold service):

Mount /metadata (not encrypted)

Unwrap metadata key

1

2

3 Attach DM (Device Mapper) volume “userdata” using dm-crypt equivalent
4. Mount as /data (f2fs)
5
6
7

Unwrap metadata fscrypt key and add to Kernel
Unwrap and load DE key

On device unlock: Unwrap and load CE key

All key unwrapping is done through TrustZone call

sigma star
gmbh

13

Master of Keys: Android Keystore

UGcrspacc
) LS LV
keyst l teke d VT 7
4 { ystore L:Pﬂ. A i J‘ C‘{aickccpcr TA }
[vold E 1 ‘ E ____j
: T r \ 477 7 H
Keymaster HAL H
{ vendor i) » Gatekeeper HAL ‘
) Keymast A
Ebkcymas*cr'_hclpcr (> = 3]
A
i
: y Y :
| I ext4 J L device-mapper) [TEE interface : '
I F2bs 6
& TEEGRIS
= .. [
% sigma star | A Y (TrustZone ©s) g
=) gmbh P Ll QLA LT L I AT O 8 .

14

Master of Keys: Android Keystore

The Android Keystore API manages all keys:

e Keymaster TA (Trusted App.) in TEE (Trusted Exec. Env. aka
TrustZone) is doing unwrap

e C(Called via a Kernel interface by keystore daemon

e keystore (and the associated Keymaster HAL library) contain a lot
of checks we have to pass for a call to succeed

e Samsung extra: libkeymaster_helper.so conctains logic to call Kernel
Keymaster TA interface

e Trick from keybuster: bypass keystore by simply calling directly
into libkeymaster_helper.so from our process

== .
=5 sigma star
=) gmbh

Act 2.1: Hunt for the Key_s_!

== .
=3 sigma star
=) gmbh

Key Blob Storage Files

For metadata encryption AOSP source reveals key blob in

/metadata/vold/metadata_encryption/key/.
Contains multiple files:

e secdiscardable: used the generate “AppID”

e stretching: contains nopassword so we can ignore it

e encrypted_key: the key blob we want to decrypt

e keymaster_key_blob: the key used by Keymaster TA to decrypt
encrypted_key - is encrypted with Keymaster TA internal key

= _.
=5 sigma star
=) gmbh

17

Unwrap, Please!

Revere engineering some functions from

libkeymaster_helper.so gives us:

e nwd_begin(...): starts unwrap with key

encryption key. Args: AppID, key blob, etc.

e nwd_update(...): performs unwrap with key
blob yielding plaintext key

e nwd_finish(...): does cleanup

= _.
=5 sigma star
=) gmbh

Keystore Daemon ' Keymaster TA
H
"
BeginOperation(keymaster_key_blob, appld, ...) o
op_handie
q---.......-—---........p;:::::::::::::::::
UpdateOperation(encrypted_key, ...) N
lain_ke
q-_---------_------====E;;_';-.y.':::::::::::::::==
H FinishOperation(...) -
iL >
: H
" 1
. 1
1

18

=
=

Full Unwrap Code

Pseudocode of unwrap logic using libkeymaster_helper.so:
unwrap_vold_key() {
secdiscard = read_file("./secdiscardable");
app_id = generate_appid(secdiscard); // essentially SHA512 with some constants added
keyblob = read_file("./encrypted_key");
kek = read_file("./keymaster_key_blob");
in_params = generate_in_params(keyblob[:12] /* nonce */);
dummy = {0};
nwd_begin(KM_PURPOSE_DECRYPT, kek, in_params, NULL, &dummy, &handle);
nwd_update(handle, NULL, keyblob[12:], NULL, NULL, &dummy_cnt, &dummy, &plain_key);

nwd_finish(handle, NULL, NULL, NULL, NULL, NULL, &dummy, NULL);

sigma star
gmbh

19

Key Blob Parameters

in_params for Keymaster TA:

256-bit AES key

128-bit GCM MAC (no padding, 128-bit min MAC length)

Nonce from key blob

Tag AppID: needs the AppID generated from secdiscardable file
(SHA512 with some constants added)

Tag TAG_NO_AUTH_REQUIRED: no user credentials needed

Tag TAG_ROLLBACK_RESISTANCE (if possible, re-tries without
afterwards)

=
=, sigma star 20

gmbh

Delving Deeper

Now we can mount userdata partition (/data) which holds the key

blobs for fscrypt:

/data/misc/vold/user_keys/de/0/: user DE (device encrypted)
/data/misc/vold/user_keys/ce/0: user CE (credential encrypted)
/data/unencrypted/key: needed to access above folders
Unwrapping keys in /data/unencrypted/key and
/data/misc/vold/user_keys/de/0/ only required minimal changes

to our existing unwrap logic

= .
sigma star
= o

gmbh

21

Interlude: Demo || GTFO

= ..
=3 sigma star
=) gmbh

=
=

sigma star
gmbh

23

https://docs.google.com/file/d/1y5wWu4xTZT-JZo4al13W0REfn4jl9k-s/preview

(01

Act 3: Attack of the Hidden Chip

sigma star
mbh

What Happened So Far...

e Flashing Android 12 did not invalidate key blobs from
backup

e No lock code or biometrics needed yet

e TrustZone (Keymaster TA) does not care who calls it and

what state the Android 0S is in (rooted or not)!

== .
=5 sigma star
=) gmbh

25

Introducing: The Weaver Security Chip

Newer phones have what AOSP calls a “Weaver” security
chip - similar to a Key-Value store

The Samsung Galaxy S21 Ultra is the first Samsung
flagship phone having this chip

During initial setup, Android enrolls a random secret key
there (i.e. the value of the Key-Value store)

This secret key is combined with the lock code and used

as input to Keymaster TA unwrap call

= .
sigma star
= o

gmbh

26

Map to the Key

secure hy

“weaver_key' Il token

[/datn/sgetem_de/(Uid)/spblob/(hand[e).pud J

N,R, P, salt

credent

scrupt

“weavee_pud Il value

Happens in Keymaster
(TrustZone)

Em_de/<uid>/spblob/<handle>.spblob

hashed secret

suynthetic_password_chandle> i
token Il hashed secret

K ion-id" I

SHASI2 | applicationd |

ppli [
applicationld

SYNTHETIC PASSLIORD

o
ecdiscardable SHA512

some strings
as context...

secret

User’s lock code

] o /encrgpted,Kng

sigma star
gmbh

(N0

source: blog.quarkslab.com annotations: /me

TA

27

Weaver Security Chip Interaction

. - [/data/ system_de/<uid>/ 5pblob/<handle>.weaver]
weaver_key |l i

token R slot ™ umpiat

/oHAS12/ §
credentials token

"weaver_pwd” |l
value

[/data/wetem_de/(uzd)/apblob/<handle>.pw<ﬂ

I

hashed secret

|

token Il hashed
secret

aéélicationld

% sig Ma >iai

gmbh source: blog.quarkslab.com

Unrecoverable Key

e It looks like the Weaver chip is reset when a new Android
0S first set up

e Cannot derive all the inputs for Keymaster TA to decrypt
the CE key blob

e Brute force is also not possible: search space too large
(32-byte value)

e Only chance: Samsung changed AOSP code and messed up or I

missed something (totally possible &)

= .
=5 sigma star 29
£J gmbh

Fun and

Act 4

sigma star

=
=) gmbh

Insights: Android Storage Security

Android has good multi-layered approach for disk encryption
More fine-grained control over who can access what parts of
disk

Still no per-App encryption though - once CE key is known,
user’'s App data is decryptable

Disk encryption is only useful in combination with other
mechanisms: verified boot, strict SELinux policy, etc.
TrustZone 0S does not care about state of Android 0S at all
Privileged exploit can still talk to TrustZone as we did and
unwrap key blobs (not only for disk encryption)

= .
sigma star
= o

gmbh

31

Insights: Encrypted Backup Recovery

e The encrypted Disk Backup could not be recovered

e Without the device this would be impossible to do

e Backup your smartphone!

e Encrypting the backup is good, but be sure to backup the
encryption key too

e Other devices (embedded and regular) should adopt some of the
concepts from Android

Chances for a sequel to this quest: minimal - though I did just
discover one more thing to test today &

== .
=5 sigma star
=) gmbh

32

Credits

Huge thanks to the owner of the Android phone! &
Keybuster tooling and writeup on Samsung TrustZone hacking:

https://github.com/shakevsky/keybuster

Quarkslab Blog post on Android FBE:
https://blog.quarkslab.com/android-data-encryption-in-depth.ht

ml

Frida for dynamic analysis on device: https://frida.re

Ghidra for reversing: https://ghidra-sre.org
Android AOSP and Android Code Search: https://cs.android.com

= .
sigma star
= o

gmbh

33

https://github.com/shakevsky/keybuster
https://blog.quarkslab.com/android-data-encryption-in-depth.html
https://blog.quarkslab.com/android-data-encryption-in-depth.html
https://frida.re
https://ghidra-sre.org
https://cs.android.com

The End.
Questions?

= ..
=3 sigma star
=) gmbh

Bonus: Post-Credits Scene

== .
=3 sigma star
=) gmbh

Are Evil Maid Attacks Possible?

Not out of the box, but:

e Bypass of verified boot will enable it
e Unlocked bootloader is a problem

e Downgrade attacks are a problem (usually possible to do)

o Samsung did properly prevent downgrade in case of major vuln. in our

case

== .
=5 sigma star
=) gmbh

36

Metadata Encryption

Lowest encryption layer and first to unlock during boot
Called dm-default-key - pretty much the same as dm-crypt
in Linux

Encrypts storage blocks and sits beneath filesystem

Key is added to Kernel via device mapper ioctls:
DM_DEV_CREATE, DM_TABLE_LOAD, DM_DEV_SUSPEND

Similar to fscrypt all we need is the encryption key and

hand it to the Kernel

= .
sigma star
= o

gmbh

37

Device Encrypted Storage

e Second layer of encryption

e Encrypts part of storage that need to be accessible right
after boot (before lock code is provided)

e Uses fscrypt

e Encrypts based on per-directory policy (only parts of
filesystem is encrypted)

e Key is added to Kernel ioctl(3): FS_IOC_ADD_ENCRYPTION_KEY

= _.
=5 sigma star
=) gmbh

38

Credential Encrypted Storage

e Last encryption layer protecting user data (profile)

e Also uses fscrypt, so similar to DE storage

e Requires biometrics or passcode to unlock

e Will be hardest part as requires (more) interaction with

TrustZone

= _.
=5 sigma star
=) gmbh

39

