universität innsbruck

Do Not Trust Your Eyes

The Semantic Pitfalls of Modern Image Compression

Nora Hofer

Engineering Kiosk Alps Meetup \cdot Innsbruck, Austria \cdot 16 January 2025

Hello!

Research interests:

Security & Privacy Lab Group hike to Viggarspitze, Sept. 2023. Photo by Benedikt Lorch: Group hike to Viggarspitze, Tyrol, Austria, September 2023.

Digital Image Forensics

Methods for the verification of **image authenticity**, **source attribution**, and the detection of **traces of manipulation**.

Statistical image properties

2013 Boston Marathon Bombing

One of the suspects, captured by a bystander's cellphone.

0.2% of all pixels were used to identify the suspect.

Can we rely on digital images if **neural compression** is the default?

United States Attorney's Office District of Massachusetts (https://www.justice.gov/usao-ma/tsarnaev-exhibits-day-2)

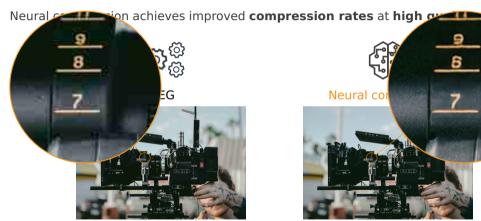
Neural Image Compression

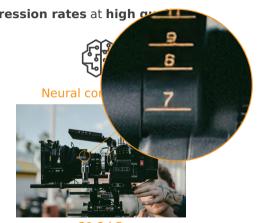
Operators of the lossy compression pipeline are replaced with **learnable elements**.

Neural compression achieves improved **compression rates** at **high quality**.

JPEG

93.6 kB


Neural compression


31.2 kB

Neural Image Compression

Operators of the lossy compression pipeline are replaced with **learnable elements**.

31.2 kB

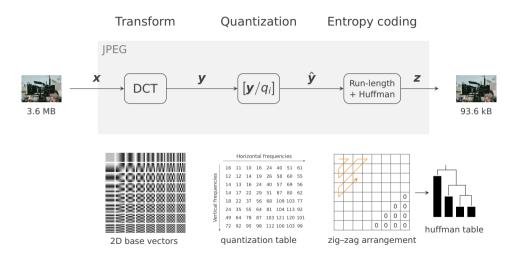
Miscompressions

Introduced by neural compression

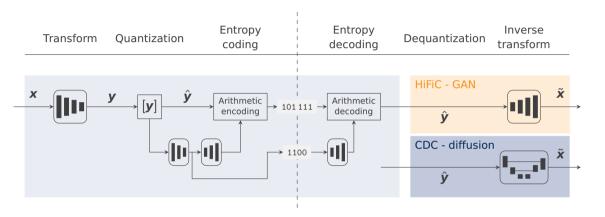
Neural compression jargon for "decompression"

Verbal description of a human observer

Definition


A reconstruction error that results in a difference between the semantic meaning of an original image and its reconstructed version after neural compression

or image detail (< 1% of pixels)


Outline

- 1. Primer on neural compression
- 2. Our taxonomy of miscompressions
- 3. Preparing for neural compression

Recall the JPEG Compression Pipeline

The Neural Compression Pipeline

Ballé, Minnen, Singh, Hwang, and Johnston, "Variational image compression with a scale hyperprior," in *ICLR*, 2018. Mentzer, Toderici, Tschannen, and Agustsson, "High-fidelity generative image compression," *NeurIPS*, 2020. Yang and Mandt, "Lossy image compression with conditional diffusion models," *NeurIPS*, 2024.

Outline

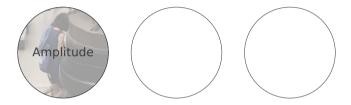
- 1. Primer on neural compression
- 2. Our taxonomy of miscompressions
- 3. Preparing for neural compression

Method

Manual inspection of the reconstructions of 552 images

Datasets: CLIC2020, DIV2K, Kodak

Neural compression schemes


- 1. Ballé, Minnen, Singh, Hwang, and Johnston, "Variational image compression with a scale hyperprior," in ICLR, 2018.
- 2. Minnen and Singh, "Channel-wise autoregressive entropy models for learned image compression," in ICIP. IEEE, 2020.
- 3. Mentzer, Toderici, Tschannen, and Agustsson, "High-fidelity generative image compression," NeurIPS, 2020.
- 4. Ballé, Valero, and Eero, "End-to-end optimized image compression." in ICLR, 2022.
- 5. Yang and Mandt, "Lossy image compression with conditional diffusion models," NeurIPS, 2024.

Examples shown in this presentation were produced with

- 3. HiFiC: Pre-trained GAN; 180 million parameters; intensities: high, mid, low
- **5. CDC:** Pre-trained diffusion model; 54 million parameters; optimization ρ : 0, 9

Taxonomy of Miscompressions

Category Amplitude

Reconstructions differ in the **amplitude of spatial frequencies** in the signal, affecting attributes such as brightness, color saturation, and the intensity of high frequency components.

Proposal for a Taxonomy

Category **Amplitude**

CDC ρ 0 Original

Original image 1152 \times 1920. Compressed to 0.17 bpp. Crop: 256 \times 164 (1.89%)

Taxonomy of Miscompressions

Category Geometry

Reconstructions contain **geometric transformations**, such as translation, rotation, scaling, and shearing, including shifted shapes and dissolved contours.

Proposal for a Taxonomy

Category Geometry

Original HiFiC lo

Original image 1984×1152 . Compressed to 0.18 bpp. Crop: 256×164 (1.84%)

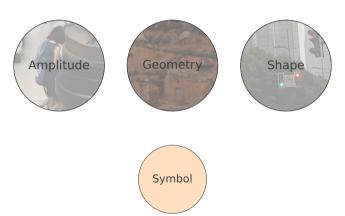
Taxonomy of Miscompressions

Category Shape

Reconstructions contain changed **contours**.

Proposal for a Taxonomy

Category Shape



CDC ρ 0 Original

Original image 1228×1840 . Compressed to 0.15 bpp. Crop: 256×128 (1.86%)

Taxonomy of Miscompressions

Symbol Modifier

Proposal for a Taxonomy

Symbol Modifier

Original

HiFiC lo

Original image 1228×1840 . Compressed to 0.15 bpp. Crop: 256×164 (1.85%)

Proposal for a Taxonomy

Symbol Modifier

Original HiFiC hi

Original image 1228×1840 . Compressed to 0.23 bpp. Crop: 256×164 (1.86%)

Outline

- 1. Primer on neural compression
- 2. Our taxonomy of miscompressions
- 3. Preparing for neural compression

How to Avoid Miscompressions?

Next steps

1. Quantify the prevalence and identify influencing factors.

Needed: Sufficiently large annotated dataset of miscompressions.

Getting the human out of the loop:

- OCR models to detect changes in letters and numbers
- Image-to-text models to compare semantic description of a scene
- **2. Tailored detection model** to identify image areas prone to be miscompressed at encoding time
- 3. Incorporate a miscompression metric in the training loss

... in the meantime: We need to deal with the existing risks.

How to Deal with the Risks?

- Document <u>visible</u> watermarks, icons, captions
- **2. Annotate** the EXIF data JPEG Trust, C2PA
- 3. **Detect** neural compression

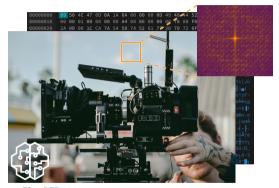


Fig: RED camera. (Image might contain miscompressions)

Bergmann et al., "Frequency-domain analysis of traces for the detection of Al-based compression," in IEEE *IWBF*, 2023. Bergmann et al., "Forensic analysis of Al-compression traces in spatial and frequency domain," *Pattern Rec.*, 2024.

Wrap Up

Conclusion

- **1.** Modern image compression algorithms use neural networks.
- 2. They achieve unprecedented compression rates at very high quality.
- **3.** They can lead to semantic changes in compressed images.

Takeaway

 Consider if the benefit of bandwidth savings is proportionate to potential risks caused by miscompressions.

Research project SCLIC

Semantic Changes in Learning based Image Compression

Funded by: Tiroler Nachwuchsforscher*innen Förderung

Hofer, N. and Böhme, R., "A Taxonomy of Miscompressions: Preparing Image Forensics for Neural Compression." In IEEE International Workshop on Information Forensics and Security (WIFS). IEEE, Rome, Italy, 2024.

universität innsbruck

Thank You!

Do Not Trust Your Eyes: The Semantic Pitfalls of Modern Image Compression

nora.hofer@uibk.ac.at

Engineering Kiosk Alps Meetup \cdot Innsbruck, Austria \cdot 16 January 2025