
noDB

Daniel Walter



Outline

≫ What Storage options do we have

≫ How to scale storage

≫ How to choose the right™one
≫ Performance measurement

≫ Examples



Why does it matter?

≫ Performance

≫ Complexity

≫ Reliability

≫ Maintainability



Scenarios

≫ Configuration

≫ Media Server

≫ Monitoring data



Storage Options, an incomplete List

≫ Relational Databases

≫ NoSQL (K/V, Wide Column, Document Store)

≫ local, remote or distributed Files

≫ Data Lakes, Data Lakehouses, Data Warehouses

≫ specialized Storage options like Graph databases, etc.



What influences our choice

≫ Structured vs unstructured Data

≫ Data access patterns

≫ Scalability requirements

≫ Data freshness requirements and update frequency



Scenarios

≫ Configuration

≫ Structured data, smaller than 10GB
≫ Read-write, with mostly reads

≫ Media Server

≫ Unstructured data, each entry can be multiple GBs
≫ Mostly read, updates on Metadata part only

≫ Monitoring data

≫ Structured data, small entries but lots of them
≫ Read-write with constant writes, but writes are typically append-only



How to scale storage

≫ Vertical scaling of the storage system

≫ Horizontal scaling options

≫ Sharding
≫ Distribution
≫ Multi Layer approach

≫ Move to hosted storage aka monetary scaling

≫ Reduce latency by adding a caching layer



Measuring Performance
Rob’s Rules #1 and #2



Benchmarking

≫ Measure the performance of a single task / function

≫ Language specific tooling

≫ Go has builtin benchmark support via the test framework
≫ Python has pyperf and timeit

≫ Rust has test::Bencher in Unstable or criterion.rs
≫ For C++ you can use google/benchmark
≫ Javascript has deno bench

≫ Ideal while developing to decide which algorithms to use

≫ E.g. compare parser implementations, serialization speed, etc



Benchmarking — Scenarios

≫ Configuration

≫ Benchmarks can help to identify the best config file format.
≫ E.g. load and parse JSON vs Protobuf vs reading data from SQLite

≫ Media Server

≫ For Metadata same as above
≫ Benchmark various Filesystems to identify which one solves the content delivery best

≫ Monitoring data

≫ In this particular case we should benchmark the write path, but results might not be
reliable



Profiling

≫ Capture performance data while the application is running

≫ Complete view of the application allows for identifing bottlenecks

≫ Very useful to find what needs to be optimized

≫ Well known tools are gperftools, perf, and dtrace



Loadtesting

≫ Send well defined mix of requests to the application and observe behaviour

≫ Needs additional ways to measure and record observations, typically done using
monitoring or even profiling.

≫ Should be done on setups similar to Prod



Conclusion



Configuration

≫ Small amount of mostly read data

≫ Data is structured and the structure is not expected to change outside a release
cycle

≫ Use either JSON or Protobuf to store the data to the file. Both normally
outperform SQLite for this task.



Media Server

≫ Multi Layer Approach for large content files

≫ 2 different storage solutions for Metadata and Content
≫ Content should be stored as Files either local on the server or on a storage solution
≫ Metadata will be stored in either a Database or in a File

≫ For smaller content

≫ Use a single Document Store



Monitoring Data

≫ Large amount of data, which is mostly append only.

≫ Low latency for recent metrics, can tolerate higher latency for older data

≫ Multi-level approach for timeseries data seems to be the best choice

≫ Recent data in memory, shard if needed

≫ Older data can be stored on disk and old data can be downsampled to save storage



Questions?


	Storage perfomance

