
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

E N G I N E E R I N G K I O S K A L P S | 1 2 . 0 6 . 2 0 2 5 | I N N S B R U C K

Multi-Tenant architectures

Maximilian Schellhorn
Sr. Solutions Architect
Amazon Web Services (AWS)

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tools NOT Rules

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenge 1: One size fits all
mindset

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Single-Tenant application

Tenant 1 Tenant 2
Benefits

Simple programming model
Tenant identity & isolation by design
Smaller blast radius

Use cases

Static set of (high paying) customers
Capped amount of potential customers
Conservative/Air gapped customers only

Challenges
Maintenance & Onboarding
Scales linear (time, effort, money)
Enables version drift

Load Balancer

Backend

DB

SKU Name

10001 Red T-shirt

30002 Blue hoodie

Load Balancer

Backend

DB

SKU Name

20001 White T-shirt

40001 Black hoodie

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-Tenant application

Benefits

Efficient & scalable
Less maintenance & faster updates

Use cases

Rapid scale & customer growth
Fast time to market & onboarding
Software-as-a-Service (SaaS)

Challenges
More complex programming model
Tenant identity & isolation at runtime
Blast radius & Noisy neighbors

Tenant 1 Tenant 2

Load Balancer

Backend

DB

FK SKU Name

Tenant1 93529-94 Black T-shirt

Tenant2 24411-01 Blue hoodie

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-Tenant systems are better
Single-Tenant systems

A Multi-Tenant system deployed for 1 customer = Single-Tenant semantics

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-Tenant applications provide flexibility

tenant*.example.com

DNS

tenant1.example.com
5000+ Basic Customers1 Premium Customer

Load Balancer

Backend

DB

Load Balancer

Backend

DB

FK SKU Name

Tenant1 93529-94 Black T-shirt

Tenant1 24411-01 Blue hoodie

FK SKU Name

Tenant2 93529-94 Red hoddie

Tenant42 24411-01 Blue hoodie

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-Tenant deployment models

Tenant 1

Silo

Microservice

Load
Balancer

Microservice

Tenant 2

Microservice

Load
Balancer

Microservice

Bridge

Tenant 1

Microservice

Load Balancer

Tenant 2-8

Microservice

Pool

Tenants 1–N

Microservice

Load Balancer

Microservice

Microservice

Microservice

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-Tenant deployments in reality

Pool

Product
microservice

Silo
(Tenant 1)

Invoice
microservice

Silo
(Tenant 2)

Pool

Shipping
microservice

Queue

Queue

Tenant 1

Tenant 2

Order
microservice

Order
microservice

Tenant 1 Tenant 2

Pool

Siloed compute and
pooled storage

Pooled compute and
pooled storage

Pooled compute and
siloed storage

Pooled compute and
storage consuming

siloed queues

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Customer data center / cloud Provider data center / cloud

Software

Software

Self-Managed vs. SaaS

Tenant 1 Tenant 2Tenant 1

Single-Tenant Self-Managed

Software

Single/Multi-Tenant (Silo) SaaS Multi-Tenant (Pooled) SaaS

Provider data center / cloud

Software

Tenant 2Tenant 1

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

CTO, SaaS company

Before we were doing SaaS, we did not prioritize the
infrastructure footprint of our software because it was
the customer’s responsibility to provide and pay for the
hardware. With SaaS, every dollar of unoptimized
infrastructure is lost business.

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Arthur M. Wellington

Engineering is the art of not-
constructing rather than
constructing. It is the art of doing
that well with 1$, which any bungler
can do with 2$ after fashion.

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenge 2: Tenant identity & isolation

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Runtime identity with tokens (JWT)

Tenant 1

Login (Federated) + Token request

Authorization
Server

{
 "sub” : ”jane",
 "email” : ”jane@...com",
 "name” : ”Jane Doe",
 ”tenant_id” : ”tenant1",
 ”tier” : ”basic",
}

Tenant 1 user

Custom attributes:
 tenant = tenant1
 tier = basic

JWT
tenant1HTTP header

Authorization: Bearer <Token>

Backend

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tenant 1

Tenant 2

Single table separated by identifier

TenantId SKU Name

Tenant1 93529-94 Black T-shirt

Tenant2 24411-01 Blue hoodie

Tenant1 76235-92 Wool socks

Tenant3 95419-37 Green polo

Policy

Tenant isolation at runtime

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Load Balancer

GET /invoices1

3

GetTenantScopedCreds()

5
4

AWS IAM

Tenant
policy

6

API Call via AWS SDK

Effect: Allow
Action: dynamodb:GetItem
Resources:
- arn:aws:dynamodb:table/Invoices
Condition:
- dynamodb:LeadingKeys:{TenantID}

Amazon
DynamoDB

TENANT_ID (PK) INVOICE_ID (SK) DETAILS

TENANT#1 2023-001 …

TENANT#2 2022-001 …

JWT
tenant1

Backend

2
JWT
tenant1

Tenant 1

API based runtime isolation

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PostgreSQL Row Level Security (RLS)

-- Turn on RLS

ALTER TABLE tenant ENABLE ROW LEVEL SECURITY;

-- Scope read/write by tenant

CREATE POLICY tenant_isolation_policy ON tenant

USING (tenant_id = (current_setting('app.current_tenant'::text)));

FK SKU Name

Tenant1 93529-94 Black T-shirt

Tenant2 24411-01 Blue hoodie

Tenant1 76235-92 Wool socks

Tenant3 95419-37 Green polo

Tenant2 88314-99 White hat

Tenant1 24598-72 Tennis shoes

Initialize RLS

-- SET tenant context

rls_multi_tenant=> SET app.current_tenant = 'tenant1’;

-- No tenant context required

rls_multi_tenant=> SELECT * FROM tenant;

-- Attempt to force other tenant id would not work

rls_multi_tenant=> SELECT * FROM tenant WHERE tenant_id = 'tenant2'

Query with RLS

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Challenge 3: Blast radius & noisy
neighbors

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Ignoring your blast radius

“The maximum impact that might be
affected in the event of a system
failure”

0 - 100%

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How do we usually protect against failures?

22

Typically
only for

Compute

Rack Down

Regional Failure

AZ Failure

Poison Pill & noisy
neighbor

Bad Deployment

Autoscaling Groups

Region Failover

Multi-AZ Deployments

Processes, Runbooks

Canary Deployments

Human Failure

Extensive testing

Failure Mode Means of protection

Can’t be
fully

mitigated.

Can’t be
fully

mitigated.

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

But what about …

23

A deployment that makes the
production network unusable?

A poisoned request that wipes
the database?

Someone accidentally deleting
the main loadbalancer?

Testing makes these failure unlikely to happen.
At scale, even unlikely scenarios happen regularly.

A spike from one customer
saturating all capacity?

A tenant triggering a very
specific bug?

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Solution: Cell based architecture

24

Cell 1

Clients

Cell 2 Cell N

…

Cell Router

• Multiple copies of the entire
application deployed in each
cell.

• Data is partitioned – there is
no replication between cells.

• Complete isolation between
cells limit and contain failure.

• Linear scale out for
additional clients

• Testability & Rollout benefits

Load
Balancer

Backend

DB

Load
Balancer

Backend

DB

Load
Balancer

Backend

DB

Tenant
10000-15000

Tenant
5000-10000

Tenant
1-5000

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved. 25

Cell Router

Cell 1 Cell 2

Cell Router

Cell 1 Cell 2

Cell Router

Cell 1 Cell 2

DNS

A) Cell Router as Load
Balancer

B) Router forwards the
request C) Routing through DNS

1.

2.

1.

2.

ü Transparent to clients
- Cell Router is critical to ongoing

transactions

ü Simple to implement
ü Clients with cached routing

information unaffected by failure
- Custom logic needed on client
- Potentially higher latency

ü Most DNS providers offer high
availability.

- Clients need to map users to DNS
names

Cell-Routing options

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Noisy Neighbor & Poison pills

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Traditional architecture

Scope of impact = All customers

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Throttling
200 rpm 50 rpm

429 Too many request

100 rps

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Sharding

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Sharding

Scope of impact =
Customers

Shards

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shuffle sharding

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shuffle sharding

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shuffle sharding

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Shuffle sharding

Scope of impact =
Customers

Combinations

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

One size fits all mindset

Blast radius & Noisy neighbors

Choose the right tenant isolation model
and be flexible

Tool

Cell-Based architectures, Throttling and
Shuffle-Sharding

Multi-Tenant (SaaS) architectures

Challenge

Tenant identity & isolation JWT tokens, API-, Service-, Encryption-based
Runtime policies

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you

Maximilian Schellhorn
mxschell@amazon.com
linkedin.com/in/maxschell/

